skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DuRant, Sarah E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bonneaud, Camille (Ed.)
    Abstract Macronutrients play a vital role in host immunity and can influence host–pathogen dynamics, potentially through dietary effects on gut microbiota. To increase our understanding of how dietary macronutrients affect physiology and gut microbiota and investigate whether feeding behaviour is influenced by an immune threat, we conducted two experiments. First, we determined whether zebra finches (Taeniopygia guttata) exhibit shifts in physiology and gut microbiota when fed diets differing in macronutrient ratios. We found the type and amount of diet consumed affected gut microbiota alpha diversity, where microbial richness and Shannon diversity increased with caloric intake in birds fed a high‐fat diet and decreased with caloric intake in birds fed a high protein diet. Diet macronutrient content did not affect physiological metrics, but lower caloric intake was associated with higher complement activity. In our second experiment, we simulated an infection in birds using the bacterial endotoxin lipopolysaccharide (LPS) and quantified feeding behaviour in immune challenged and control individuals, as well as birds housed near either a control pair (no immune threat), or birds housed near a pair given an immune challenge with LPS (social cue of heightened infection risk). We also examined whether social cues of infection alter physiological responses relevant to responding to an immune threat, an effect that could be mediated through shifts in feeding behaviour. LPS induced a reduction in caloric intake driven by a decrease in protein, but not fat consumption. No evidence was found for socially induced shifts in feeding behaviour, physiology or gut microbiota. Our findings carry implications for host health, as sickness‐induced anorexia and diet‐induced shifts in the microbiome could shape host–pathogen interactions. 
    more » « less
  2. Abstract A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development, and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes. 
    more » « less